Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Phytomedicine ; 114: 154796, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306476

ABSTRACT

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Peptides , Plant Extracts , Tandem Mass Spectrometry
2.
Int J Environ Res Public Health ; 19(23)2022 11 24.
Article in English | MEDLINE | ID: covidwho-2123640

ABSTRACT

BACKGROUND: Although vaccination against COVID-19 is highly effective, breakthrough infections occur, often leading to severe courses and death. The extent of protection provided by individual antibody levels in breakthrough infections is still unknown and cut-off levels have yet to be determined. METHODS: In 80 consecutive fully vaccinated patients hospitalized between August and December 2021 with COVID-19 breakthrough infection (Delta variant), anti-CoV2S antibody levels were analyzed for the endpoint of death. RESULTS: Ten out of the 12 patients who died (83.3%) had antibody levels < 600 U/mL; 5 (41.7%) of these had antibody levels < 200 U/mL. Only 2 patients with a level of >600 U/mL died from vaccine breakthrough infection. Correction for the number of comorbidities and age revealed that anti-CoV2S antibody levels at the time of hospitalization were a significant predictor for reduced risk of death (OR = 0.402 for every 1000 U/mL, p = 0.018). CONCLUSIONS: In this retrospective data analysis, we show that almost all patients who died from COVID-19 vaccine breakthrough infection had antibody levels < 600 U/mL, most of them below 200 U/mL. In logistic regression corrected for the number of comorbidities and age, anti-CoV2S antibody levels at the time of hospitalization proved to be a significantly protective predictor against death.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines/therapeutic use , Breakthrough Infections , Retrospective Studies , SARS-CoV-2
3.
Front Microbiol ; 13: 989879, 2022.
Article in English | MEDLINE | ID: covidwho-2089866

ABSTRACT

China experienced another widespread Coronavirus disease 2019 (COVID-19) outbreak recently caused by the Omicron variant, which is less severe but far more contagious than the other COVID-19 variants, leading local governments to focus efforts on eliminating the spread of the disease. Previous studies showed that after "recovering" from the virus, some patients could re-test positive for COVID-19 with nucleic acid tests, challenging the control of disease spread. In this study, we aimed to analyze the clinical and laboratory characteristics of re-positive COVID-19 patients in Northeast China. We retrospectively analyzed data from confirmed reverse transcription polymerase chain reaction (RT-PCR) re-positive COVID-19 patients who were admitted to the First Hospital of Jilin University, Jilin Province, China, from March to June 2022. Detailed clinical symptoms, medical history, anti-Corona Virus (CoV) IgG and IgM levels, and CoV nucleic acid cycle threshold (Ct) values during the re-positive period were collected and analyzed. A total of 180 patients were included in this study, including 62 asymptomatic cases and 118 mild cases. The cohort included 113 men and 67 women, with an average age of 45.73 years. The median time between recovery from the virus and re-positivity was 13 days. Our results showed that the proportion of re-positive patients with symptoms was lower, and the nucleic acid test-positive duration was shorter during the re-positive period. Furthermore, in patients with underlying disease, the proportion of patients with symptoms was higher, anti-CoV IgG levels were lower, and the total disease duration was longer. In conclusion, during the re-positive period, the symptoms were milder, and the CoV nucleic acid test-positive course was shorter. The concomitant underlying disease is an important factor associated with clinical symptoms, and the overall course of COVID-19 re-positive patients may be associated with lower anti-CoV IgG levels. Large-scale and multicenter studies are recommended to better understand the pathophysiology of recurrence in patients with COVID-19.

4.
Med Res Rev ; 41(3): 1375-1426, 2021 05.
Article in English | MEDLINE | ID: covidwho-956732

ABSTRACT

In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , Antiviral Agents/pharmacology , COVID-19/virology , Drug Delivery Systems , Humans , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL